Annexe 4: Further reading
-
Due to the Data (Use and Access) Act coming into law on 19 June 2025, this guidance is under review and may be subject to change. The Plans for new and updated guidance page will tell you about which guidance will be updated and when this will happen.
PROV provenance standard
- Moreau, L. & Missier, P. (2013). PROV-DM: The PROV Data Model. W3C Recommendation.
- Huynh, T. D., Stalla-Bourdillon, S. & Moreau, L. (2019). Provenance-based Explanations for Automated Decisions : Final IAA Project Report.
Resources for exploring algorithm types
General
- Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83-85.
- Molnar, C. (2019). Interpretable machine learning: A guide for making black box models explainable.
- Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206.
Regularised regression (LASSO and Ridge)
- Gaines, B. R., & Zhou, H. (2016). Algorithms for fitting the constrained lasso. Journal of Computational and Graphical Statistics, 27(4), 861-871.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267-288.
Generalised linear model (GLM)
- glmnet: Lasso and Elastic-Net Regularized Generalized Linear Models
- Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1), 1-22.
- Simon, N., Friedman, J., Hastie, T., & Tibshirani, R. (2011). Regularization paths for Cox's proportional hazards model via coordinate descent. Journal of Statistical Software, 39(5), 1-13.
Generalised additive model (GAM)
Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 150-158). ACM.
Wood, S. N. (2006). Generalized additive models: An introduction with R. CRC Press.
Decision tree (DT)
Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. CRC Press.
Rule/decision lists and sets
Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. (2017). Learning certifiably optimal rule lists for categorical data. The Journal of Machine Learning Research, 18(1), 8753-8830.
Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016, August). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675-1684). ACM.
Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9(3), 1350-1371.
Wang, F., & Rudin, C. (2015). Falling rule lists. In Artificial Intelligence and Statistics (pp. 1013-1022).
Case-based reasoning (CBR)/ Prototype and criticism
Aamodt, A. (1991). A knowledge-intensive, integrated approach to problem solving and sustained learning. Knowledge Engineering and Image Processing Group. University of Trondheim, 27-85. http://www.dphu.org/uploads/attachements/books/books_4200_0.pdf
Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59. https://www.idi.ntnu.no/emner/tdt4171/papers/AamodtPlaza94.pdf
Bichindaritz, I., & Marling, C. (2006). Case-based reasoning in the health sciences: What's next?. Artificial intelligence in medicine, 36(2), 127-135. http://cs.oswego.edu/~bichinda/isc471-hci571/AIM2006.pdf
Bien, J., & Tibshirani, R. (2011). Prototype selection for interpretable classification. The Annals of Applied Statistics, 5(4), 2403-2424.
Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to criticize! criticism for interpretability. In Advances in Neural Information Processing Systems (pp. 2280-2288). http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf
MMD-critic in python: https://github.com/BeenKim/MMD-critic
Kim, B., Rudin, C., & Shah, J. A. (2014). The bayesian case model: A generative approach for case-based reasoning and prototype classification. In Advances in Neural Information Processing Systems (pp. 1952-1960). http://papers.nips.cc/paper/5313-the-bayesian-case-model-a-generative-approach-for-case-based-reasoning-and-prototype-classification.pdf
Supersparse linear integer model (SLIM)
Jung, J., Concannon, C., Shroff, R., Goel, S., & Goldstein, D. G. (2017). Simple rules for complex decisions. Available at SSRN 2919024. https://arxiv.org/pdf/1702.04690.pdf
Rudin, C., & Ustun, B. (2018). Optimized scoring systems: toward trust in machine learning for healthcare and criminal justice. Interfaces, 48(5), 449-466. https://pdfs.semanticscholar.org/b3d8/8871ae5432c84b76bf53f7316cf5f95a3938.pdf
Ustun, B., & Rudin, C. (2016). Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 102(3), 349-391.
Optimized scoring systems for classification problems in python: https://github.com/ustunb/slim-python
Simple customizable risk scores in python: https://github.com/ustunb/risk-slim
Resources for exploring supplementary explanation strategies
Surrogate models (SM)
Bastani, O., Kim, C., & Bastani, H. (2017). Interpretability via model extraction. arXiv preprint arXiv:1706.09773. https://obastani.github.io/docs/fatml17.pdf
Craven, M., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In Advances in neural information processing systems (pp. 24-30). http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf
Van Assche, A., & Blockeel, H. (2007). Seeing the forest through the trees: Learning a comprehensible model from an ensemble. In European Conference on Machine Learning (pp. 418-429). Springer, Berlin, Heidelberg. https://link.springer.com/content/pdf/10.1007/978-3-540-74958-5_39.pdf
Valdes, G., Luna, J. M., Eaton, E., Simone II, C. B., Ungar, L. H., & Solberg, T. D. (2016). MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. Scientific reports, 6, 37854. https://www.nature.com/articles/srep37854
Partial Dependence Plot (PDP)
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://projecteuclid.org/download/pdf_1/euclid.aos/1013203451
Greenwell, B. M. (2017). pdp: an R Package for constructing partial dependence plots. The R Journal, 9(1), 421-436. https://pdfs.semanticscholar.org/cdfb/164f55e74d7b116ac63fc6c1c9e9cfd01cd8.pdf
For the software in R: https://cran.r-project.org/web/packages/pdp/index.html
Individual Conditional Expectations Plot (ICE)
Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24(1), 44-65. https://arxiv.org/pdf/1309.6392.pdf
For the software in R see:
https://cran.r-project.org/web/packages/ICEbox/index.html
https://cran.r-project.org/web/packages/ICEbox/ICEbox.pdf
Accumulated Local Effects Plots (ALE)
Apley, D. W., & Zhu, J. (2019). Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468. https://arxiv.org/pdf//1612.08468;Visualizing
https://cran.r-project.org/web/packages/ALEPlot/index.html
Global variable importance
Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
Casalicchio, G., Molnar, C., & Bischl, B. (2018, September). Visualizing the feature importance for black box models. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 655-670). Springer, Cham. https://arxiv.org/pdf/1804.06620.pdf
Fisher, A., Rudin, C., & Dominici, F. (2018). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. arXiv:1801.01489
Fisher, A., Rudin, C., & Dominici, F. (2018). Model class reliance: Variable importance measures for any machine learning model class, from the “Rashomon” perspective. arXiv preprint arXiv:1801.01489. https://arxiv.org/abs/1801.01489v2
Hooker, G., & Mentch, L. (2019). Please Stop Permuting Features: An Explanation and Alternatives. arXiv preprint arXiv:1905.03151. https://arxiv.org/pdf/1905.03151.pdf
Zhou, Z., & Hooker, G. (2019). Unbiased Measurement of Feature Importance in Tree-Based Methods. arXiv preprint arXiv:1903.05179. https://arxiv.org/pdf/1903.05179.pdf
Global variable interaction
Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916-954. https://projecteuclid.org/download/pdfview_1/euclid.aoas/12239080461.
Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A simple and effective model-based variable importance measure. arXiv preprint arXiv:1805.04755. https://arxiv.org/pdf/1805.04755.pdf
Hooker, G. (2004, August). Discovering additive structure in black box functions. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 575-580). ACM. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7500&rep=rep1&type=pdf
Local Interpretable Model-Agnostic Explanation (LIME)
Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). ACM. https://arxiv.org/pdf/1602.04938.pdf?mod=article_inline
LIME in python: https://github.com/marcotcr/lime
LIME experiments in python: https://github.com/marcotcr/lime-experiments
Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. In Thirty-Second AAAI Conference on Artificial Intelligence. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7500&rep=rep1&type=pdf
Anchors in python: https://github.com/marcotcr/anchor
Anchors experiments in python: https://github.com/marcotcr/anchor-experiments
Shapley Additive ExPlanations (SHAP)
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (pp. 4765-4774). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
Software for SHAP and its extensions in python: https://github.com/slundberg/shap
R wrapper for SHAP: https://modeloriented.github.io/shapper/
Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307-317. http://www.library.fa.ru/files/Roth2.pdf#page=39
Counterfactual explanation
Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31, 841. https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf
Ustun, B., Spangher, A., & Liu, Y. (2019). Actionable recourse in linear classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency(pp. 10-19). ACM. https://arxiv.org/pdf/1809.06514.pdf
Evaluate recourse in linear classification models in python: https://github.com/ustunb/actionable-recourse
Secondary explainers and attention-based systems
Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. In Thirty-Second AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17082/16552
Park, D. H., Hendricks, L. A., Akata, Z., Schiele, B., Darrell, T., & Rohrbach, M. (2016). Attentive explanations: Justifying decisions and pointing to the evidence. arXiv preprint arXiv:1612.04757. https://arxiv.org/pdf/1612.04757
Other resources for supplementary explanation
IBM’s Explainability 360: http://aix360.mybluemix.net
Biecek, B., & Burzykowski, T. (2019). Predictive Models: Explore, Explain, and Debug, Human-Centered Interpretable Machine Learning. Retrieved from https://pbiecek.github.io/PM_VEE/
Accompanying software, Dalex, Descriptive mAchine Learning Explanations: https://github.com/ModelOriented/DALEX
Przemysław Biecek, Interesting resources related to XAI: https://github.com/pbiecek/xai_resources
Christoph Molnar, iml: Interpretable machine learning https://cran.r-project.org/web/packages/iml/index.html