Skip to main content

Contents

PROV provenance standard

Resources for exploring algorithm types

General

Regularised regression (LASSO and Ridge)

Generalised linear model (GLM)

Generalised additive model (GAM)

Lou, Y., Caruana, R., & Gehrke, J. (2012). Intelligible models for classification and regression. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 150-158). ACM. 

Wood, S. N. (2006). Generalized additive models: An introduction with R. CRC Press.

Decision tree (DT)

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and Regression Trees. CRC Press.

Rule/decision lists and sets

Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M., & Rudin, C. (2017). Learning certifiably optimal rule lists for categorical data. The Journal of Machine Learning Research, 18(1), 8753-8830. 

Lakkaraju, H., Bach, S. H., & Leskovec, J. (2016, August). Interpretable decision sets: A joint framework for description and prediction. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1675-1684). ACM. 

Letham, B., Rudin, C., McCormick, T. H., & Madigan, D. (2015). Interpretable classifiers using rules and bayesian analysis: Building a better stroke prediction model. The Annals of Applied Statistics, 9(3), 1350-1371. 

Wang, F., & Rudin, C. (2015). Falling rule lists. In Artificial Intelligence and Statistics (pp. 1013-1022). 

Case-based reasoning (CBR)/ Prototype and criticism

Aamodt, A. (1991). A knowledge-intensive, integrated approach to problem solving and sustained learning. Knowledge Engineering and Image Processing Group. University of Trondheim, 27-85. http://www.dphu.org/uploads/attachements/books/books_4200_0.pdf

Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI communications, 7(1), 39-59. https://www.idi.ntnu.no/emner/tdt4171/papers/AamodtPlaza94.pdf

Bichindaritz, I., & Marling, C. (2006). Case-based reasoning in the health sciences: What's next?. Artificial intelligence in medicine, 36(2), 127-135. http://cs.oswego.edu/~bichinda/isc471-hci571/AIM2006.pdf

Bien, J., & Tibshirani, R. (2011). Prototype selection for interpretable classification. The Annals of Applied Statistics, 5(4), 2403-2424

Kim, B., Khanna, R., & Koyejo, O. O. (2016). Examples are not enough, learn to criticize! criticism for interpretability. In Advances in Neural Information Processing Systems (pp. 2280-2288). http://papers.nips.cc/paper/6300-examples-are-not-enough-learn-to-criticize-criticism-for-interpretability.pdf

MMD-critic in python: https://github.com/BeenKim/MMD-critic

Kim, B., Rudin, C., & Shah, J. A. (2014). The bayesian case model: A generative approach for case-based reasoning and prototype classification. In Advances in Neural Information Processing Systems (pp. 1952-1960). http://papers.nips.cc/paper/5313-the-bayesian-case-model-a-generative-approach-for-case-based-reasoning-and-prototype-classification.pdf

Supersparse linear integer model (SLIM)

Jung, J., Concannon, C., Shroff, R., Goel, S., & Goldstein, D. G. (2017). Simple rules for complex decisions. Available at SSRN 2919024. https://arxiv.org/pdf/1702.04690.pdf

Rudin, C., & Ustun, B. (2018). Optimized scoring systems: toward trust in machine learning for healthcare and criminal justice. Interfaces, 48(5), 449-466. https://pdfs.semanticscholar.org/b3d8/8871ae5432c84b76bf53f7316cf5f95a3938.pdf

Ustun, B., & Rudin, C. (2016). Supersparse linear integer models for optimized medical scoring systems. Machine Learning, 102(3), 349-391.

Optimized scoring systems for classification problems in python: https://github.com/ustunb/slim-python

Simple customizable risk scores in python: https://github.com/ustunb/risk-slim

Resources for exploring supplementary explanation strategies

Surrogate models (SM)

Bastani, O., Kim, C., & Bastani, H. (2017). Interpretability via model extraction. arXiv preprint arXiv:1706.09773. https://obastani.github.io/docs/fatml17.pdf

Craven, M., & Shavlik, J. W. (1996). Extracting tree-structured representations of trained networks. In Advances in neural information processing systems (pp. 24-30). http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf

Van Assche, A., & Blockeel, H. (2007). Seeing the forest through the trees: Learning a comprehensible model from an ensemble. In European Conference on Machine Learning (pp. 418-429). Springer, Berlin, Heidelberg. https://link.springer.com/content/pdf/10.1007/978-3-540-74958-5_39.pdf

Valdes, G., Luna, J. M., Eaton, E., Simone II, C. B., Ungar, L. H., & Solberg, T. D. (2016). MediBoost: a patient stratification tool for interpretable decision making in the era of precision medicine. Scientific reports, 6, 37854. https://www.nature.com/articles/srep37854

Partial Dependence Plot (PDP)

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232. https://projecteuclid.org/download/pdf_1/euclid.aos/1013203451

Greenwell, B. M. (2017). pdp: an R Package for constructing partial dependence plots. The R Journal, 9(1), 421-436. https://pdfs.semanticscholar.org/cdfb/164f55e74d7b116ac63fc6c1c9e9cfd01cd8.pdf

For the software in R: https://cran.r-project.org/web/packages/pdp/index.html

Individual Conditional Expectations Plot (ICE)

Goldstein, A., Kapelner, A., Bleich, J., & Pitkin, E. (2015). Peeking inside the black box: Visualizing statistical learning with plots of individual conditional expectation. Journal of Computational and Graphical Statistics, 24(1), 44-65. https://arxiv.org/pdf/1309.6392.pdf

For the software in R see:
https://cran.r-project.org/web/packages/ICEbox/index.html
https://cran.r-project.org/web/packages/ICEbox/ICEbox.pdf

Accumulated Local Effects Plots (ALE)

Apley, D. W., & Zhu, J. (2019). Visualizing the effects of predictor variables in black box supervised learning models. arXiv preprint arXiv:1612.08468. https://arxiv.org/pdf//1612.08468;Visualizing

https://cran.r-project.org/web/packages/ALEPlot/index.html

Global variable importance

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Casalicchio, G., Molnar, C., & Bischl, B. (2018, September). Visualizing the feature importance for black box models. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 655-670). Springer, Cham. https://arxiv.org/pdf/1804.06620.pdf

Fisher, A., Rudin, C., & Dominici, F. (2018). All models are wrong, but many are useful: Learning a variable’s importance by studying an entire class of prediction models simultaneously. arXiv:1801.01489

Fisher, A., Rudin, C., & Dominici, F. (2018). Model class reliance: Variable importance measures for any machine learning model class, from the “Rashomon” perspective. arXiv preprint arXiv:1801.01489. https://arxiv.org/abs/1801.01489v2

Hooker, G., & Mentch, L. (2019). Please Stop Permuting Features: An Explanation and Alternatives. arXiv preprint arXiv:1905.03151. https://arxiv.org/pdf/1905.03151.pdf

Zhou, Z., & Hooker, G. (2019). Unbiased Measurement of Feature Importance in Tree-Based Methods. arXiv preprint arXiv:1903.05179. https://arxiv.org/pdf/1903.05179.pdf

Global variable interaction

Friedman, J. H., & Popescu, B. E. (2008). Predictive learning via rule ensembles. The Annals of Applied Statistics, 2(3), 916-954. https://projecteuclid.org/download/pdfview_1/euclid.aoas/12239080461.

Greenwell, B. M., Boehmke, B. C., & McCarthy, A. J. (2018). A simple and effective model-based variable importance measure. arXiv preprint arXiv:1805.04755. https://arxiv.org/pdf/1805.04755.pdf

Hooker, G. (2004, August). Discovering additive structure in black box functions. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 575-580). ACM. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7500&rep=rep1&type=pdf

Local Interpretable Model-Agnostic Explanation (LIME)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should I trust you?: Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). ACM. https://arxiv.org/pdf/1602.04938.pdf?mod=article_inline

LIME in python: https://github.com/marcotcr/lime
LIME experiments in python: https://github.com/marcotcr/lime-experiments

Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. In Thirty-Second AAAI Conference on Artificial Intelligence. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.91.7500&rep=rep1&type=pdf

Anchors in python: https://github.com/marcotcr/anchor
Anchors experiments in python: https://github.com/marcotcr/anchor-experiments

Shapley Additive ExPlanations (SHAP)

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (pp. 4765-4774). http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

Software for SHAP and its extensions in python: https://github.com/slundberg/shap
R wrapper for SHAP: https://modeloriented.github.io/shapper/

Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2(28), 307-317. http://www.library.fa.ru/files/Roth2.pdf#page=39

Counterfactual explanation

Wachter, S., Mittelstadt, B., & Russell, C. (2017). Counterfactual explanations without opening the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31, 841. https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf

Ustun, B., Spangher, A., & Liu, Y. (2019). Actionable recourse in linear classification. In Proceedings of the Conference on Fairness, Accountability, and Transparency(pp. 10-19). ACM. https://arxiv.org/pdf/1809.06514.pdf

Evaluate recourse in linear classification models in python: https://github.com/ustunb/actionable-recourse

Secondary explainers and attention-based systems

Li, O., Liu, H., Chen, C., & Rudin, C. (2018). Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. In Thirty-Second AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/17082/16552

Park, D. H., Hendricks, L. A., Akata, Z., Schiele, B., Darrell, T., & Rohrbach, M. (2016). Attentive explanations: Justifying decisions and pointing to the evidence. arXiv preprint arXiv:1612.04757. https://arxiv.org/pdf/1612.04757

Other resources for supplementary explanation

IBM’s Explainability 360: http://aix360.mybluemix.net

Biecek, B., & Burzykowski, T. (2019). Predictive Models: Explore, Explain, and Debug, Human-Centered Interpretable Machine Learning. Retrieved from https://pbiecek.github.io/PM_VEE/

Accompanying software, Dalex, Descriptive mAchine Learning Explanations: https://github.com/ModelOriented/DALEX

Przemysław Biecek, Interesting resources related to XAI: https://github.com/pbiecek/xai_resources

Christoph Molnar, iml: Interpretable machine learning https://cran.r-project.org/web/packages/iml/index.html